93793

C 20645

(**Pages : 3**)

Nan	ne	 	
D			
Keø			

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2022

(CBCSS-UG)

Mathematics

MTS 6B 10—REAL ANALYSIS

(2019 Admissions)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A

Answer at least **ten** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

- 1. Define continuity of a function. Show that the constant function f(x) = b is continuous on \mathbb{R} .
- 2. State Boundedness theorem. Is boundedness of the interval, a necessary condition in the theorem ? Justify with an example.
- 3. If $f : A \to IR$ is uniformly continuous on $A \subseteq \mathbb{R}$ and (x_n) is a Cauchy sequence in A. Then show that $f(x_n)$ is a Caychy sequence in \mathbb{R} .
- 4. Define Riemann sum of a function $f : [a,b] \to \mathbb{R}$.
- 5. Suppose f and g are in $\mathbb{R}[a,b]$ then show that f + g is in $\mathbb{R}[a,b]$.
- 6. State squeeze theorem for Riemann integrable functions.
- 7. If f belong to $\mathbb{R}[a,b]$, then show that its absolute value |f| is in $\mathbb{R}[a,b]$.
- 8. Define pointwise convergence of a sequence (f_n) of functions.
- 9. Discuss the uniform convergence of $f_n(x) = x^n$ on (-1,1].
- 10. If $h_n(x) = 2nxe^{-nx^2}$ for $x \in [0,1], n \in \mathbb{N}$ and h(x) = 0 for all $x \in [0,1]$, then show that :

$$\lim \int_{0}^{1} h_n(x) dx \neq \int_{0}^{1} h(x) dx.$$

11. State Cauchy criteria for uniform convergence series of functions.

Turn over

93793

C 20645

 $(10 \times 3 = 30 \text{ marks})$

- 12. Evaluate $\int_{-1}^{0} \frac{dx}{\sqrt[3]{x}}$.
- 13. What is Cauchy principle value. Find the principal value of $\int_{-\infty}^{1} \frac{dx}{x}$.
- 14. State Leibniz rule for differentiation of Ramann integrals.
- 15. State that $\lceil (p+1) = p \rceil p$ for p > 0.

Section B

 $\mathbf{2}$

Answer at least **five** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

16. Show that the Dirichlet's function :

 $f(x) = \begin{cases} 1 \text{ if } x \text{ is rational} \\ 0 \text{ if } x \text{ is irrational} \end{cases} \text{ is not continuous at any point of } \mathbb{R}.$

- 17. State and prove Bolzano intermediate value theorem.
- 18. Show that the following functions are not uniformly continuous on the given sets :

(a)
$$f(x) = x^2$$
 on $A = [0, \infty]$.
(b) $g(x) = \sin \frac{1}{x}$ on $B = (0, \infty)$.

- 19. If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b], then show that $f \in \mathbb{R}[a,b]$.
- 20. Let (f_n) be a sequence of continuous functions on a set $A \subseteq \mathbb{R}$ and suppose that (f_n) converges uniformly on A to a function $f : A \to \mathbb{R}$. Then show that f is continuous on A.
- 21. Let $f_n:[0,1] \to \mathbb{R}$ be defined for $n \ge 2$ by :

$$f_n(x) = \begin{cases} n^2 x & , 0 \le x \le \frac{1}{n} \\ -n^2 (x - 2/n), \frac{1}{n} \le x \le \frac{2}{n} \\ 0 & , \frac{2}{n} \le x \le 1. \end{cases}$$

Show that the limit function is Riemann integrable. Verify whether $\lim_{n \to \infty} \int_{0}^{1} f_n(x) = \int_{0}^{1} f(x) dx$.

93793

C 20645

 $(5 \times 6 = 30 \text{ marks})$

22. Given
$$\iint_{R^2} e^{-(x^2+y^2)} dx dy = \pi$$
, find the value of $\int_{0}^{\infty} e^{-x^2} dx = \sqrt{\frac{\pi}{2}}$

23. Show that
$$\forall p > 0, q > 0$$
 B $(p,q) = \frac{|p|q}{\lceil (p+q) \rceil}$.

Section C

Answer any **two** questions. Each question carries 10 marks.

- 24. State and prove Location of roots theorem.
- 25. State and prove Additivity theorem.
- 26. Evaluate (a) $\lim \frac{x^n}{1+x^n}$ for $x \in \mathbb{R}, x \ge 0$. (b) $\lim \frac{\sin nx}{1+nx}$ for $x \in \mathbb{R}, x \ge 0$.

Discuss about their uniform convergence.

27. (a) Show that
$$\forall q > -1, \int_{0}^{1} x^{q} e^{-x} dx$$
 converges.

(b) Show that $\forall q \leq -1, \int_{0}^{1} x^{q} e^{-x} dx$ diverges.

 $(2 \times 10 = 20 \text{ marks})$

3