C 20207

(**Pages : 3**)

Name..... Reg. No.....

SIXTH SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, MARCH 2022

Mathematics

MAT 6B 09-REAL ANALYSIS

(2014 to 2018 Admissions)

Time : Three Hours

Maximum : 120 Marks

Part A

Answer all questions. Each question carries 1 mark.

- 1. Define uniform continuity of a function.
- 2. State Weierstrass approximation theorem.
- 3. Find ||P|| if P = {0, 2, 3, 4} in a partition of [0, 4].
- 4. Give an example for a function which is not Riemann integrable.
- 5. Define step function.
- 6. State Lebesgue integrability criterion.
- 7. Define uniform convergence of a series of functions.

8.
$$\lim_{n\to\infty}\frac{x^2+nx}{n}.$$

- 9. Write an example for an absolutely convergent improper integral.
- 10. Cauchy principal value of $\int x dx = .$
- 11. Define Beta function.
- 12. Fill in the blanks : $\Gamma(3) = -----$

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any **ten** questions. Each question carries 4 marks.

- 13. Let I = [a, b] be a closed bounded interval and $f: I \to \mathbb{R}$ be continuous on I. If $k \in \mathbb{R}$ is any number satisfying $\inf f(I) \le k \le \sup f(I)$ then prove that there exists a number $c \in I$ such that f(c) = k.
- 14. State and prove Preservation of Intervals theorem.

Turn over

C 20207

- 15. Show by an example that every uniformly continuous function need not be a Lipschitz function.
- 16. If $\phi: [a, b] \to \mathbb{R}$ is a step function, prove that $\phi \in \mathfrak{R}[a, b]$.
- 17. Suppose that $f, g \in \mathfrak{R}[a, b]$. Prove that $fg \in \mathfrak{R}[a, b]$.
- 18. State the substitution theorem of Riemann integration. Use it to evaluate $\int_{0}^{4} \frac{\sin \sqrt{t}}{\sqrt{t}} dt$.
- 19. Let (f_n) be a sequence of bounded functions of $A \subseteq \mathbb{R}$. Suppose that $||f_n f||_A \to 0$. Then prove that (f_n) converges uniformy on A to f.
- 20. If f_n is continuous of $D \subseteq \mathbb{R}$ to \mathbb{R} for each $n \in \mathbb{N}$ and if $\sum f_n$ converges to f uniformly on D, then prove that f is continuous on D.
- 21. State and prove Weierstrass M-Test for a series of functions.
- 22. Discuss the uniform convergence of $\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$.
- 23. Test the convergence of $\int_0^\infty \frac{1}{x^2} dx$.
- 24. Show that $\Gamma(n + 1) = n!$ when *n* is a positive integer.
- 25. Show that $\beta(m, n) = \beta(n, m)$.
- 26. Evaluate $\int_0^1 x^m \left(\log \frac{1}{x}\right)^n dx$.

 $(10 \times 4 = 40 \text{ marks})$

Part C

Answer any **six** questions. Each question carries 7 marks.

- 27. Let I = [a, b] be a closed bounded interval and let $f : I \to \mathbb{R}$ be continuous on I. Then prove that f is bounded on I.
- 28. State and prove Uniform Continuity Theorem.
- 29. State and prove Continuous Extension Theorem.
- 30. If $f : [a, b] \to \mathbb{R}$ is monotone on [a, b] then prove that $f \in \mathfrak{R}[a, b]$.
- 31. Discuss the convergence of the sequence $(f_n(x))$ where $f_n(x) = \frac{x^n}{x^n + 1}$, $x \in [0, 2]$.
- 32. State and prove Taylor's Theorem with the Reminder.

C 20207

- 33. Let $f \in \Re[a,b]$ and let f be continuous at a point $c \in [a,b]$. Prove that the indefinite integral $F(z) = \int_{a}^{z} f$ for $z \in [a,b]$ is differentiable at c and F'(c) = f(c).
- 34. Show that $\Gamma\left(\frac{P}{2}\right)\Gamma\left(\frac{P+1}{2}\right) = \frac{\sqrt{\pi}}{2^{P-1}}\Gamma(p).$

35. Evaluate the integral $\int_{0}^{1} x^{2} (1 - \sqrt{x}) dx$.

 $(6 \times 7 = 42 \text{ marks})$

Part D

Answer any **two** questions. Each question carries 13 marks.

- 36. (a) State and prove Maximum Minimum Theorem.
 - (b) Test the uniform continuity of $f(x) = \sqrt{x}$ on [0, 2].
- 37. (a) Let $f:[a,b] \to \mathbb{R}$ and $c \in (a,b)$. Prove that $f \in \mathfrak{R}[a,b]$ if and only if its restriction to [a, c] and [c, b] are both Riemann integrable. In this case show that $\int_a^b f = \int_a^c f + \int_c^b f$.
 - (b) If $f \in \Re[a, b]$ and if $[c, d] \subseteq [a, b]$ then prove that the restriction of f to [c, d] is in $\Re[c, d]$.

38. (a) Prove that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}, \forall m, n > 0.$$

(b) Find the value of $\Gamma\left(\frac{1}{2}\right)$.

 $(2 \times 13 = 26 \text{ marks})$