197465

C 21545

(**Pages : 4**)

Name..... Reg. No.....

FOURTH SEMESTER (CBCSS-UG) DEGREE EXAMINATION, APRIL 2022

Mathematics

MTS 4B 04-LINEAR ALGEBRA

(2019 Admission onwards)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A (Short Answer Type Questions)

Answer at least **ten** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

- 1. Show that the linear system of equations 4x 2y = 1 has infinitely many solutions. 16x - 8y = 4
- 2. Write any two facts about row echelon forms and reduced row echelon forms.
- 3. Express the linear system $\begin{array}{l} 4x_1-3x_3+x_4=1\\ 5x_1+x_2-8x_4=3\\ 2x_1-5x_2+9x_3-x_4=0\\ 3x_2-x_3+7x_4=2 \end{array}$

in the form AX = B.

4. Let V = R² and define addition and scalar multiplication as follows. For $\overline{u} = (u_1, u_2), \overline{v} = (v_1, v_2), \overline{v} = (v$

 $\overline{u} + \overline{v} = (u_1 + v_1, u_2 + v_2)$ and for a real number $k, k\overline{u} = (ku_1, 0)$. For $\overline{u} = (1, 1)$ and $\overline{v} = (-3, 5)$ find $\overline{u} + \overline{v}$ and for k = 5, find $k\overline{u}$. Also show that one axiom for vector space is not satisfied.

- 5. Define basis for a vector space.
- 6. How will you relate the dimension of a finite dimensional vector space to the dimension of its subspace. Give two facts.
- 7. Give a solution to the change of basis problem.
- 8. When you can say that a system of linear equation Ax = b is consistent. What is meant by a particular solution of the consistent system Ax = b.
- 9. Find the rank of a 5×7 matrix A for which Ax = 0 has a two-dimensional solution space.

Turn over

197465

C 21545

- 10. If $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation. Then define its kernel ker (T_A) and Range of (T_A) . What is ker (T_A) in terms of null-space of A.
- 11. Discuss the geometric effect on the unit square of multiplication by a diagonal matrix $A = \begin{vmatrix} k_1 & 0 \\ 0 & k_2 \end{vmatrix}$.
- 12. Confirm by multiplication that x is an eigen vector of A and find the corresponding eigen value, if
 - $\mathbf{A} = \begin{bmatrix} 5 & -1 \\ 1 & 3 \end{bmatrix} \text{ and } x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$
- 13. Let \mathbb{R}^2 have the weighted Euclidean inner product $\langle u, v \rangle = 2u_1v_1 + 3u_2v_2$. For u = (1,1), v = (3,2), compute d(u,v).
- 14. If u and v are orthogonal vectors in a real inner product space, then show that $||u+v||^2 = ||u||^2 + ||v||^2$.
- 15. State four properties of orthogonal matrices.

 $(10 \times 3 = 30 \text{ marks})$

Section B (Paragraph/ Problem Type Questions)

Answer at least **five** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

16. Suppose that the augmented matrix for a linear system has been reduced to the row echelon form

as $\begin{bmatrix} 1 & 0 & 8 & -5 & 6 \\ 0 & 1 & 4 & -9 & 3 \\ 0 & 0 & 1 & 1 & 2 \end{bmatrix}$ solve the system.

- 17. If A is an invertible matrix, then show that A^{T} is also invertible and $(A^{T})^{-1} = (A^{-1})^{T}$.
- 18. Let V be a vector space and \overline{u} , a vector in V and k a scalar. Then show that (i) $O\overline{u} = 0$; (ii) $(-1)\overline{u} = -\overline{u}$.

197465

- 19. If $S = [v_1, v_2, ..., v_n]$ is a basis for a vector space V, then show that every vector v in V can be expressed in form $v = c_1v_1 + c_2v_2 + ... + c_nv_n$ in exactly one way. What are the co-ordinates of V relative to the basis S?
- 20. Consider the basis $B = [u_1, u_2]$ and $B' = [u_1, u_2]$ for R^2 , where $u_1 = (2, 2)$ $u_2 = (4, -1)$ $u_1 = (1, 3)$ $u_2 = (-1, -1).$
 - (a) Find the transition matrix from B' to B.
 - (b) Find the transition matrix from B to B'.
- 21. If A is a matrix with *n* columns, then define rank A, nullity of A and establish a relationship between them.
- 22. Define eigen space corresponding to an eigen value λ of a square matrix A. Also find eigen value and bases for the eigen space of the matrix $A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$.
- 23. Use the Gram-Schmidt process for an orthonormal basis corresponding to the basis vectors $u_1 = (1,1,1), u_2 = (0,1,1) \text{ and } u_3 = (0,0,1).$

 $(5 \times 6 = 30 \text{ marks})$

Section C (Essay Type Questions)

Answer any **two** questions. Each question carries 10 marks.

- 24. Show that the following statements are equivalent for an $n \times n$ matrix A :
 - (a) A is invertible.
 - (b) Ax = 0 has only the trivial solution.
 - (c) The reduced row echelon form of A is I_n .
 - (d) A is expressible as a product of elementary matrices.

25. (a) Define Wronskian of the functions $f_1 = f_1(x), f_2 = f_2(x) \dots f_n = f_n(x)$ which are n - 1 times differentiable in $(-\infty, \infty)$. Use this to show that $f_1 = x$ and $f_2 = \sin x$ are linearly independent vectors in $c^{\infty}(-\infty, \infty)$.

(b) Show that the vectors $v_1 = (1,2,1), v_2 = (2,9,0)$ and $v_3(3,3,4)$ form a basis for \mathbb{R}^3 .

Turn over

197465

C 21545

26. (a) If A is the matrix
$$\begin{vmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{vmatrix}$$
, then find a basis for the row space consisting on entirely

4

row vectors from A.

(b) Find the standard matrix for the operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ that first rotates a vector counter clockwise about *z*-axis through an angle θ , reflects the resulting vector about *yz* plane and then projects that vector orthogonally onto the *xy* plane.

27. (a) On P₂, polynomial in [-1,1], define innerproduct as $\langle p,q \rangle = \int_{-1}^{1} p(x)q(x)dx$. Find ||p||, ||q||

and $\langle p,q \rangle$ for p = x and $q = x^2$.

(b) If A is an $n \times n$ matrix with real entries, show that A is orthogonally diagonalizable if and only if A has an orthonormal set of n eigenvectors.

 $(2 \times 10 = 20 \text{ marks})$