73393

C 4162

(**Pages : 4**)

Nan	ne	• • • • • • • • • • • • • • •	•••••	•••••
Rea	No			

SECOND SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

MAT 2C 02-MATHEMATICS

Time : Three Hours

Maximum : 80 Marks

Part A (Objective Type Questions)

Answer all **twelve** questions. Each question carries 1 mark.

- 1. Find $\int a^x dx$.
- 2. Define the partial derivative of f(x, y) with respect to $x \operatorname{at}(x_0, y_0)$.
- 3. If f is continuous on $[a, \infty)$, then $\lim_{b \to \infty} \int_{a}^{b} f(x) dx =$
- 4. If a series $\sum a_n$ an converges, then $\lim a_n =$
- 5. Find the n^{th} term of the sequence $-2, 2, -2, 2, \dots$
- 6. Find the domain of the function $z = \sin xy$.
- 7. The polar form of the line y = 2 is
- 8. $\frac{d}{dx}\cosh x = \dots$
- 9. If $f(x, y) = 2x^2y$ then find $\frac{\partial^2 f}{\partial x \partial y}$.
- 10. Give an example of conditionally converging series.

Turn over

73393

C 4162

 $\mathbf{2}$

- 11. State Sandwich theorem for sequences.
- 12. Write the transformation equations for Cartesian co-ordinates to spherical polar co-ordinates.

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

- 13. Evaluate $\int_0^{\log 2} 4e^x \sinh x \, dx$.
- 14. The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$ and the *x*-axis is revolved about the *x*-axis to generate a solid. Find its volume.
- 15. Determine whether the sequence $a_n = \frac{2n+1}{3n+1}$ is non-decreasing and if it is bounded from above.
- 16. Describe the level surface of the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2 1}$.
- 17. The plane x = 1 intersects the paraboloid $z = x^2 + y^2$ in a parabola. Find the slope of the tangent to the parabola at (1, 2, 5).
- 18. Find $\frac{\partial z}{\partial y}$ if the equation $yz \ln z = x + y$ defines z as a function of the two independent variables x and y and the partial derivatives exists.
- 19. Is the area under the curve $y = \ln x/x^2$ from x = 1 to $x = \infty$ finite ? If so, what is it ?
- 20. Evaluate $\int_0^1 \frac{dx}{\sqrt{3+4x^2}}$.
- 21. Write the polar form of the circle $x^2 + (y-3)^2 = 9$.
- 22. Draw the polar curve $r = 2 \cos \theta$.

73393

C 4162

- 23. Find a spherical co-ordinate equation for the sphere $x^2 + y^2 + (z-1)^2 = 1$.
- 24. Find the volume of $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Type)

Answer any **six** questions. Each question carries 5 marks.

25. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines

y = 1, x = 4 about the line y = 1.

26. Investigate the convergence of $\int_0^3 \frac{dx}{(x-1)^{2/3}}$.

- 27. Does the sequence whose *n*th term is $\left(\frac{n+1}{n-1}\right)^n$ converge ? If so, find its limit.
- 28. Find the sum of the series $\sum_{n=1}^{\infty} \frac{2^{n-1}-1}{3^n}.$
- 29. Find the linearization of $f(x, y, z) = x^2 xy + 3 \sin z$ at the point (2, 1, 0).
- 30. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = 2x + 2y z^2$, x = r/s, $y = r^2 + \ln s$, z = 2r.
- 31. Find the length of the curve $x = \frac{y^3}{3} + \frac{1}{4y}$ from y = 1 to y = 3.

Turn over

73393

C 4162

4

32. Show that $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$ converges.

33. Find the radius and interval of convergence of the series $\sum_{n=0}^{\infty} (-1)^n (4x+1)^n$.

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Type)

Answer any **two** questions. Each question carries 10 marks.

- 34. Find the length of the cardioid $r = 1 \cos \theta$.
- 35. a) Evaluate $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$.
 - b) Show that $\tanh^2 x = 1 \operatorname{sech}^2 x$
- 36. a) Using partial differentiation find w'(0) if w = xy + z, $x = \cos t$, $y = \sin t$, z = t.

b) If f(x-y, y-z, z-x) = 0, show that $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = 0$.

 $(2 \times 10 = 20 \text{ marks})$